
Journeyman Python Documentation
Release 3.6

Agiliq and COntributors

Jul 22, 2018

Chapters:

1 Learning Python by reading code of well engineered software 1
1.1 How Pandas uses first class functions . 2
1.2 Iterators, slicing and generators in SQLAlchemy . 2
1.3 How Django uses decorators to simplify apis . 2
1.4 Understanding python magic methods by reading Django queryset source code. 2
1.5 Understanding Python context managers by reading Django source code 5

2 Indices and tables 11

i

ii

CHAPTER 1

Learning Python by reading code of well engineered software

The best way to learn any programing language and technique is to read other people’s code. What better way to learn
that read through the code of some of the most well engineered open source Python libraries. In this book, we will
read through selected code from Django, Flask and Pandas.

1

Journeyman Python Documentation, Release 3.6

We will learn topics such as decorators, context managers, generators, iterators, itertool, and common design patterns
used by Django, Flask and Pandas.

1.1 How Pandas uses first class functions

1.2 Iterators, slicing and generators in SQLAlchemy

1.3 How Django uses decorators to simplify apis

1.4 Understanding python magic methods by reading Django query-
set source code.

1.4.1 What are magic methods?

Django querysets are amazing. We use them everyday, but rarely think about the wonderful API they give us. Just
some of the amazing properties which queysets have

• You can get a slice queryset[i:j] out of them, only the needed objects are pulled from DB.

• You can lookup a specifc object queryset[i], only the required object is pulled from DB.

• You can iterate over them, for user in users_queryset, as if they were a list.

• You can AND or OR them and they apply the criteria at the SQL level.

• You can use them like a boolean, if users_queryset: users_queryset.
update(first_name="Batman")

• You can pickle and unpickle them, even when the individual istances may not be.

• You can get a useful representation of the queryset in python cli, or ipython. Even if the queryset consists of
1000s of records, only first 20 records will be printed and shown.

Querysets get all of these properties by implemnting the Python magic methods, aka the dunder methods. So why do
you need these magic, dunder methods? Because they make the api much cleaned to use.

It is more intutive to say, if users_queryset: users_queryset.do_something() than if
users_queryset.as_boolean: users_queryset.do_something(). It is more intutive to say
queryset_1 & queryset_2 rather than queryse_1.do_and(queryset_2)

Magic methods are metods implemented by classes which have a special meaning to the Python interpretor. They
always start with a __ and are sometimes called dunder method. (Dunder == double underscore).

Query and related classes implement the following methods to get the properies we listed above.

• __getitem__: For queryset[i:j] and queryset[i]

• __iter__ for for user in users_queryset

• __and__ and __or__ for queryset_1 & queryset_2 and queryset_1 | queryset_2

• __bool__ to use them like a boolean

• __getstate__ and __setstate__ to pickle and unpickle them

• __repr__ to get a useful representation and to limit the DB hit

We will look at how Django 2.0 does it.

2 Chapter 1. Learning Python by reading code of well engineered software

Journeyman Python Documentation, Release 3.6

1.4.2 Implementing __getitem__

The code looks like this:

def __getitem__(self, k):
"""Retrieve an item or slice from the set of results."""
if not isinstance(k, (int, slice)):

raise TypeError
assert ((not isinstance(k, slice) and (k >= 0)) or

(isinstance(k, slice) and (k.start is None or k.start >= 0) and
(k.stop is None or k.stop >= 0))), \

"Negative indexing is not supported."

if self._result_cache is not None:
return self._result_cache[k]

if isinstance(k, slice):
qs = self._chain()
if k.start is not None:

start = int(k.start)
else:

start = None
if k.stop is not None:

stop = int(k.stop)
else:

stop = None
qs.query.set_limits(start, stop)
return list(qs)[::k.step] if k.step else qs

There is a lot going on here, but each if block is straightforward.

• In the first of block, we ensure slice has reaonable value.

• In second block, if _result_cache is filled, aka the queryset has been evaluated, we return the slice from
the cache and skip hitting the db again.

• If the _result_cache is not filled, we qs.query.set_limits(start, stop) which sets the limit
and offset in sql.

1.4.3 Implementing __iter__

def __iter__(self):
...
self._fetch_all()
return iter(self._result_cache)

Pretty strightforward, we populate the data then use builtin iter to return an iterator.

It is also instructive to look at FlatValuesListIterable.__iter__ which uses yield to implment
__iter__.

class FlatValuesListIterable(BaseIterable):
"""
Iterable returned by QuerySet.values_list(flat=True) that yields single
values.
"""

(continues on next page)

1.4. Understanding python magic methods by reading Django queryset source code. 3

Journeyman Python Documentation, Release 3.6

(continued from previous page)

def __iter__(self):
queryset = self.queryset
compiler = queryset.query.get_compiler(queryset.db)
for row in compiler.results_iter(chunked_fetch=self.chunked_fetch, chunk_

→˓size=self.chunk_size):
yield row[0]

1.4.4 Implementing __and__ and __or__

The code looks like this:

def __and__(self, other):
self._merge_sanity_check(other)
if isinstance(other, EmptyQuerySet):

return other
if isinstance(self, EmptyQuerySet):

return self
combined = self._chain()
combined._merge_known_related_objects(other)
combined.query.combine(other.query, sql.AND)
return combined

We d some sanity checks on the querysets, return early if one of the querysets is empty then apply SQL or using
combined.query.combine(other.query, sql.AND). The __or__ is essentially same except the SQL
is changed using combined.query.combine(other.query, sql.OR)

1.4.5 Implementing __bool__

The code looks like this:

def __bool__(self):
self._fetch_all()
return bool(self._result_cache)

Pretty straightforward, _fetch_all() ensures that the queryset is evaluated, and _result_cache is filled. We
then return the boolean equivalent of _result_cache, which means if there are any records, you will get a True.

1.4.6 Implementing __getstate__ and __setstate__

__getstate__ and __setstate__ look like this:

def __getstate__(self):
Force the cache to be fully populated.
self._fetch_all()
return {**self.__dict__, DJANGO_VERSION_PICKLE_KEY: get_version()}

def __setstate__(self, state):
msg = None
pickled_version = state.get(DJANGO_VERSION_PICKLE_KEY)
if pickled_version:

current_version = get_version()
if current_version != pickled_version:

(continues on next page)

4 Chapter 1. Learning Python by reading code of well engineered software

Journeyman Python Documentation, Release 3.6

(continued from previous page)

msg = (
"Pickled queryset instance's Django version %s does not "
"match the current version %s." % (pickled_version, current_version)

)
else:

msg = "Pickled queryset instance's Django version is not specified."

if msg:
warnings.warn(msg, RuntimeWarning, stacklevel=2)

self.__dict__.update(state)

While pickling, we ensure data is populated, then use self.__dict__ to get queryset representation, and return
it along with Django version. While unpickling, __setstate__ ensures that a warning is raised when pickled
querysets are used across Django versions.

On a related note, {**self.__dict__, DJANGO_VERSION_PICKLE_KEY: get_version()}, shows
why you should move to Python 3. This syntax for merging dictionaries doesn’t work in Python2.

1.4.7 Implementing __repr__

The code for __repr__, look like this

def __repr__(self):
data = list(self[:REPR_OUTPUT_SIZE + 1])
if len(data) > REPR_OUTPUT_SIZE:

data[-1] = "...(remaining elements truncated)..."
return '<%s %r>' % (self.__class__.__name__, data)

This is straightforward, but has a few nice tricks worth looking at.

self[:REPR_OUTPUT_SIZE + 1] does slicing, which because we implemented __getitem__, does ...
limit ... offset ... query.

REPR_OUTPUT_SIZE ensures that we don’t pull in the wholeyset to display data, but pulls up
REPR_OUTPUT_SIZE + 1 records. On next line len(data) > REPR_OUTPUT_SIZE allows us the check
if there were more records without hitting the DB.

1.4.8 Final thoughts

Magic, dunder methods provide a clean straightforward way to provide a clean api to your classes. Unlike their name,
they don’t have any hidden magic and should be used where it makes sense.

1.5 Understanding Python context managers by reading Django
source code

Django comes with a bunch of useful context managers. We will read their source code to find what context managers
can do and how to implement them including some best parctices.

The three I use most are

• transactions.atomic - To get a atomic transaction block

1.5. Understanding Python context managers by reading Django source code 5

Journeyman Python Documentation, Release 3.6

• TestCase.settings - To change settings during a test run

• connection.cursor - TO get a raw cursor

connection.cursor Is generally implemented in the actual DB backends such a psycopg2, so we will focus on
transactions.atomic, TestCase.settings and a few other contextmanagers.

1.5.1 What is a context manager?

Context managers are a code patterns for

• Step 1: Do something

• Step 2: Do something else

• Step 3: Final step, this step must be guaranteed to run.

For example when you say

with transaction.atomic():
This code executes inside a transaction.
do_more_stuff()

What you really want is:

• create a savepoint

• do_more_stuff()

• Commit or rollback the savepoint

Similarly, when you say (Inside a django.test.TestCase)

with self.settings(LOGIN_URL='/other/login/'):
response = self.client.get('/sekrit/')

What you want is

• Change settings to LOGIN_URL=’/other/login/’

• response = self.client.get('/sekrit/'), assert something with on response with the changed
setting.

• Change settings back to what existed at start.

A context manager povides a clean api to enforce this three step workflow.

1.5.2 Some non-Django context managers

The most common context manager is

with open('alice-in-wonderland.txt', 'rw') as infile:
line = infile.readlines()
do_something_more()

If you did not have open contextmanager, you would need to do the below everytime, because you need to ensure
do_something_more() is called.

6 Chapter 1. Learning Python by reading code of well engineered software

Journeyman Python Documentation, Release 3.6

try:
infile = open('alice-in-wonderland.txt', 'r')
line = infile.readlines()
do_something_more()

finally:
infile.close()

Another common use is

a_lock = threading.Lock()

with a_lock:
do_something_more()

And without a context manager, this would have been.

a_lock.acquire()
try:

do_something_more()
finally:

a_lock.release()

So at a high level, context managers are syntactic sugar for ‘‘try: . . . finally . . . ‘‘ block. This is important, so I
will repeat context managers are syntactic sugar for ‘‘try: . . . finally . . . ‘‘ block

1.5.3 Implementing context managers

Context managers can be implemented as a class with two required methods and one optional __init__

• __enter__: what to do when the context starts

• __exit__: what to do when the context ends

• __init__: if your context manager requires arguments

Alternatively, you can use contextlib.contextmanager with yield statements to get a context manager. We
will see an example in the next section.

1.5.4 A simple Django context manager

In django/tests/backends/mysql/tests.py, Django implements a very simple context manager.

@contextmanager
def get_connection():

new_connection = connection.copy()
yield new_connection
new_connection.close()

And then uses it like this:

def test_setting_isolation_level(self):
with get_connection() as new_connection:

new_connection.settings_dict['OPTIONS']['isolation_level'] = self.other_
→˓isolation_level

self.assertEqual(
self.get_isolation_level(new_connection),

(continues on next page)

1.5. Understanding Python context managers by reading Django source code 7

Journeyman Python Documentation, Release 3.6

(continued from previous page)

self.isolation_values[self.other_isolation_level]
)

There is some code here which doesn’t immediately concern us, let us just focus on with get_connection()
as new_connection:

Using @contextmanager, here is what happened:

• The part before yield new_connection = connection.copy() handles the context setup.

• The yield new_connection part allows using new_connection as as new_connection.

• The part after yield new_connection.close() handle context teardown.

Lets look at the TestCase.settings next, which uses the __enter__ - __exit__ protocol.

1.5.5 Implementing Testcase.settings

Testcase.settings is implemented as

def settings(self, **kwargs):
"""
A context manager that temporarily sets a setting and reverts to the
original value when exiting the context.
"""
return override_settings(**kwargs)

There is a bit of class hierarchy to jup through which takes us from

Testcase.settings→ override_settings→ TestContextDecorator

Skipping the part we don’t care about, we get

class TestContextDecorator:
...
def enable(self):

raise NotImplementedError

def disable(self):
raise NotImplementedError

def __enter__(self):
return self.enable()

def __exit__(self, exc_type, exc_value, traceback):
self.disable()

And then override_settings implements .enable and .disable

class override_settings(TestContextDecorator):
...
def enable(self):

Keep this code at the beginning to leave the settings unchanged
in case it raises an exception because INSTALLED_APPS is invalid.
if 'INSTALLED_APPS' in self.options:

try:
apps.set_installed_apps(self.options['INSTALLED_APPS'])

except Exception:
(continues on next page)

8 Chapter 1. Learning Python by reading code of well engineered software

Journeyman Python Documentation, Release 3.6

(continued from previous page)

apps.unset_installed_apps()
raise

override = UserSettingsHolder(settings._wrapped)
for key, new_value in self.options.items():

setattr(override, key, new_value)
self.wrapped = settings._wrapped
settings._wrapped = override
for key, new_value in self.options.items():

setting_changed.send(sender=settings._wrapped.__class__,
setting=key, value=new_value, enter=True)

def disable(self):
if 'INSTALLED_APPS' in self.options:

apps.unset_installed_apps()
settings._wrapped = self.wrapped
del self.wrapped
for key in self.options:

new_value = getattr(settings, key, None)
setting_changed.send(sender=settings._wrapped.__class__,

setting=key, value=new_value, enter=False)

There is a lot of boiler plate here which is interesting, but skipping the state management we see

class override_settings(TestContextDecorator):
...
def enable(self):

...
This gets called by __enter__
for key, new_value in self.options.items():

setattr(override, key, new_value)
self.wrapped = settings._wrapped
settings._wrapped = override
for key, new_value in self.options.items():

setting_changed.send(sender=settings._wrapped.__class__,
setting=key, value=new_value, enter=True)

def disable(self):
...
This gets called by __exit__
for key in self.options:

new_value = getattr(settings, key, None)
setting_changed.send(sender=settings._wrapped.__class__,

setting=key, value=new_value, enter=False)

1.5.6 Implmenting context manager to also be used as a decorator.

When you can say with transaction.atomic():, you can get the same effect by using it as a decorator.

@transaction.atomic
def do_something():

this must run in a transaction
...

Implmenting a context manager to also be used as a decorator is a common pattern and Django does the same with
atomic. contextlib.ContextDecorator makes this straightforward.

1.5. Understanding Python context managers by reading Django source code 9

Journeyman Python Documentation, Release 3.6

class Atomic is implemented later
def atomic(using=None, savepoint=True):

Bare decorator: @atomic -- although the first argument is called
`using`, it's actually the function being decorated.
if callable(using):

return Atomic(DEFAULT_DB_ALIAS, savepoint)(using)
Decorator: @atomic(...) or context manager: with atomic(...): ...
else:

return Atomic(using, savepoint)

class Atomic(ContextDecorator):
There is a lot of complicated corner cases and error handling.
See the gory details in django/django/db/transaction.py
def __init__(self, using, savepoint):

self.using = using
self.savepoint = savepoint

def __enter__(self):
connection = get_connection(self.using)
...
sid = connection.savepoint()
connection.savepoint_ids.append(sid)

def __exit__(self, exc_type, exc_value, traceback):
Skip the gory details
...
sid = connection.savepoint_ids.pop()
if sid is not None:

try:
connection.savepoint_commit(sid)

except DatabaseError:
connection.savepoint_rollback(sid)

1.5.7 Final thoughts

Context managers provide a simple API for a powerfulo construct. Even though they are merely syntactic sugar, they
make for an itutive API and in conjunction with the contextlib module are easy to implement.

10 Chapter 1. Learning Python by reading code of well engineered software

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

	Learning Python by reading code of well engineered software
	How Pandas uses first class functions
	Iterators, slicing and generators in SQLAlchemy
	How Django uses decorators to simplify apis
	Understanding python magic methods by reading Django queryset source code.
	Understanding Python context managers by reading Django source code

	Indices and tables

