
Django gotchas Documentation
Release 0.1

Usware Technologies and Contributers

Feb 07, 2018

Contents

1 Urls 3
1.1 Url patterns catching unexpected patterns . 3
1.2 Urlpatterns failing to catch expected patterns . 3

2 Views 5
2.1 Not returning a HttpResponse . 5
2.2 Not including RequestContext . 5
2.3 Filtering on id . 5
2.4 Passing locals() to templates . 6

3 Forms 7
3.1 request.POST binding to wrong parameter in forms . 7
3.2 Using form.cleaned_data before calling form.is_valid . 7
3.3 Overriding form.save in ModelForms: . 8
3.4 Not calling superclass __init__ . 8

4 Models 9
4.1 Not adding a max_length to models.CharField . 9
4.2 Adding null=True on subclasses of CharField . 9
4.3 Not handling for ModelClass.DoesNotExist and ModelClass.MultipleObjectsReturned 9
4.4 Overriding .save() . 9
4.5 Trying qs.get(‘foo’) . 10
4.6 Trying to use an stale object . 10

5 Templates 11
5.1 Relative imports and extends in templates . 11
5.2 Not wrapping {% for %} in {% if %} . 11
5.3 Template Silencing: . 12

6 Contrib 13
6.1 Manually Authenticating a User: . 13

7 Indices and tables 15

i

ii

Django gotchas Documentation, Release 0.1

Contents:

Contents 1

Django gotchas Documentation, Release 0.1

2 Contents

CHAPTER 1

Urls

1.1 Url patterns catching unexpected patterns

Consider these patterns,:

...
url('edit/', edit_view,)
url('edit/bulk/', edit_bulk_view)
...

So when you try to go to ‘edit/bulk/’ you would get the edit_view, as ‘edit/’ pattern matched ‘edit/bulk/’.

Solution: Always use the smallest pattern which matches.:

...
url('^edit/$', edit_view,)
url('^edit/bulk/$', edit_bulk_view)
...

Tip: In most of the cases you should be starting you patterns with ^ and ending it with $.

1.2 Urlpatterns failing to catch expected patterns

You want to edit posts based on slugs, so you do:

url('^edit/(?P<entry_slug>\w-+)/$', edit_view,)

However this would not catch slugs with - in them.

Solution: Think of the each value the slug can take, if you allow charactors and dashes, the next line would catch all
of them.

url(‘^edit/(?P<entry_slug>[w-]+)/$’, edit_view,)

3

Django gotchas Documentation, Release 0.1

4 Chapter 1. Urls

CHAPTER 2

Views

2.1 Not returning a HttpResponse

This is very common, but Django complains loudly. So very obvious and easy to fix.

Solution: Always return HttpResponse via any of the mechanisms.

2.2 Not including RequestContext

Sometime you mean this:

return render_to_response('templates/app/template.html', payload,
→˓RequestContext(request))

But write:

return render_to_response('templates/app/template.html', payload,)

So any of your data from context processors would not be available. Eg, media_url.

Solution:

If you must use this, always be sure why you are doing it this way.

return render_to_response(‘templates/app/template.html’, payload,)

2.3 Filtering on id

A common view function:

def edit_post(request, id): Post.objects.get(id = id)

5

Django gotchas Documentation, Release 0.1

id is a builtin in Python and overriding that is probably a bad idea. But this happens commonly as Django names the
table’s PK id.

Solution:

Name the variables descriptively or always use pk

def edit_post(request, post_id): Post.objects.get(pk = post_id)

2.4 Passing locals() to templates

It is sometimes very tempting to pass locals() to the templates, especially if you have used a lot of variables, and most
of them are used in templates.

This is almost always a bad idea as,

1. it makes it harder to debug templates, as you do not know what variables are available in the template at one glance.
2. Make it harder to refactor views, as you can not remove unneeded variables from the view after refactoring, as you
dont know whether they are being used in templates.

Solution: Don’t use locals(), always explicitly create a dictionary to pass to the templates.

6 Chapter 2. Views

CHAPTER 3

Forms

3.1 request.POST binding to wrong parameter in forms

This is a common idiom in a view.:

def view_func(request):
form = FormClass()
if request.method == 'POST':

form=FormClass(request.POST)#Gotcha
....

payload = {'form':form}
return render_to_response(...)

Now suppose we edited our form class to:

class FormClass(forms.Form):
def __init__(self, user = None, *args, **kwargs):

...

request.POST will bind to user, when we meant to be the POST data.

Solution:

Rewrite the gotcha line as

form=FormClass(data=request.POST)

3.2 Using form.cleaned_data before calling form.is_valid

Even if you are sure your form passes validation, you still need to call is_valid. form.cleaned_data is calculated after
form.is_valid is called, which you probably are using in your form.save().

7

Django gotchas Documentation, Release 0.1

3.3 Overriding form.save in ModelForms:

Similar to models.save, forms.save are often (wrongly) overriden as forms.save:

def forms.save(self):
...
super(FormCLass, self).save()

This won’t work in many cases, for example form.save(commit=False)

Solution:

Always save as:

def forms.save(self, *args, **kwargs):
...
super(FormClass, self).save(*args, **kwargs)

3.4 Not calling superclass __init__

You might want to change the widget of a particular form field and this can be done by overriding Form’s __init__.:

from django.contrib.admin.widgets import AdminFileWidget

class FormClass(forms.ModelForm):

class Meta:
model = Profile

def __init__(self, *args, **kwargs):
self.fields['picture'].widget = AdminFilewidget() #Gotcha

self.fields is populated after __init__ of ModelForm has executed. So, make sure to call superclass __init__ before
accessing self.fields.:

def __init__(self, *args, **kwargs):
super(FormClass, self).__init__(*args, **kwargs)
self.fields['picture'].widget = AdminFilewidget()

8 Chapter 3. Forms

CHAPTER 4

Models

4.1 Not adding a max_length to models.CharField

If you do not add a max_length to CharFields your models will not validate.

Solution:

Add a max_length. If you want a field with unlimited length, use a TextField.

4.2 Adding null=True on subclasses of CharField

Read about null to find out why null=True should not be used for CharField. Often people keep this in mind but still
use null=True on fields like EmailField, SlugField etc. Note that these fields are subclasses of CharField and hence
not making them as null applies to these fields too.

4.3 Not handling for ModelClass.DoesNotExist and Model-
Class.MultipleObjectsReturned

If you are doing a ModelClass.objects.get(this = that) unless you are doing it for a unique key, this has a potential to
raise ‘ModelClass.MultipleObjectsReturned and ModelClass.DoesNotExist. This needs to be handled.

Solution: If one of the query criteria is on an unique field, put it in a try: .. except ModelClass.DoesNotExits:... If
there criteria has no unique field, handle both DoesNotExist and MultipleObjectsReturned. In a view function use
django.shortcuts.get_object_or_404(ModelClass, criteria = criteria)

4.4 Overriding .save()

Most of the times you would be using model_obj.save() without any parameters, so you may override .save as:

9

https://docs.djangoproject.com/en/dev/ref/models/fields/#null

Django gotchas Documentation, Release 0.1

def save(self):
...
super(ModelClass, self).save()

This would work until, .save is called with a parameter. For example, when you use get_or_create, .save is called with
as .save(force_insert = True), which will fail.

Solution: Override save as:

def save(self, *args, **kwargs):
...
super(ModelClass, self).save(*args, **kwargs)

4.5 Trying qs.get(‘foo’)

Django .get and ‘.filter‘ takes only keywords argument. So ModelClass.objects.get(foo) gives an error. Similarly
creating objects as ModelClass(foo=foo) takes only keyword arguments.

Solution: Use keyword arguments.

4.6 Trying to use an stale object

What is wrong with code?:

def foo(req):
obj =ModelClass.objects.get(pk = 5)
magic(obj.pk)
payload{'obj':obj}
return render_to_response(template, payload, ..)

Django does not have object identity, hence any change made to the database within obj within magic won’t be
available in the function.

Solution: There is no easy solution to it, but you can keep youself from being bitten by this behaviour. Pull objects
close to their use. Keep track of when an used object is updated and pull them again from the database if updated.

10 Chapter 4. Models

CHAPTER 5

Templates

5.1 Relative imports and extends in templates

Django templates can not import via relative imports. This is therefore wrong.:

{% extends '../base.html' %}

{% include '../../breadcrumbs_frag.html' %}

Solution: Always import as specified from the application/template directory, or the TEMPLATE_DIRS specified in
settings.py

5.2 Not wrapping {% for %} in {% if %}

A common pattern is:

<!-- or any other element, eg table -->
{% for comments in post.comment_set.all %}

{{ comment }}

{% endfor %}

This doesnot handle an empty queryset, and will create a empty , which might be visible and break your
design depending on your css.

Solution:

Wrap it in {% if %}:

{% if post.comment_set.all %}
<!-- or any other element, eg table -->

11

Django gotchas Documentation, Release 0.1

{% for comments in post.comment_set.all %}

{{ comment }}

{% endfor %}

{# optional else #}
{% else %}
<div>No comment</div>
{% endif %}

Or (Django 1.1 only)

<!– or any other element, eg table –> {% for comments in post.comment_set.all %} {{ comment
}} {% empty %} No comment {% endfor %}

5.3 Template Silencing:

Any empty variable is rendered empty in the templates. But errors are rendered empty as well. Django templates
silence many variable errors and render nothing at that position.

Solution:

During development set the template string to a convenient value when the template string is invalid.

This setting helps.:

TEMPLATE_STRING_IF_INVALID = ‘{{ %s }}’

Tip: This should be one of the settings in your localsettings, or one of conditions within if DEBUG:

Warning: The breaks the admin design.

12 Chapter 5. Templates

CHAPTER 6

Contrib

6.1 Manually Authenticating a User:

django.contrib.auth defines a method named login, with the following signature (in the file __init__.py):

def login(request, user):
"""
Persist a user id and a backend in the request. This way a user doesn't
have to reauthenticate on every request.

"""

login takes request and the user object. However, passing a standard user object and a request, doesn’t log the user in,
when logging in manually, because authenticate() sets an extra argument on the user object, that is used for logging
in.

Solution:

When loggining in the user manually, first use the authenticate method.:

user_auth = authenticate(username=new_user.username, password=pw1)
login(request, user_auth)

13

Django gotchas Documentation, Release 0.1

14 Chapter 6. Contrib

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

15

	Urls
	Url patterns catching unexpected patterns
	Urlpatterns failing to catch expected patterns

	Views
	Not returning a HttpResponse
	Not including RequestContext
	Filtering on id
	Passing locals() to templates

	Forms
	request.POST binding to wrong parameter in forms
	Using form.cleaned_data before calling form.is_valid
	Overriding form.save in ModelForms:
	Not calling superclass __init__

	Models
	Not adding a max_length to models.CharField
	Adding null=True on subclasses of CharField
	Not handling for ModelClass.DoesNotExist and ModelClass.MultipleObjectsReturned
	Overriding .save()
	Trying qs.get(‘foo’)
	Trying to use an stale object

	Templates
	Relative imports and extends in templates
	Not wrapping {% for %} in {% if %}
	Template Silencing:

	Contrib
	Manually Authenticating a User:

	Indices and tables

