
Essential Python Tools Documentation
Release 3.7

Agiliq

Jul 31, 2018

Table of Contents:

1 Interactive environments and debugging 3
1.1 Ipython . 3
1.2 Jupyter . 4
1.3 pdb and ipdb . 5

2 Linters and formatters 7
2.1 PEP8 . 7
2.2 pycodestyle . 7
2.3 pylint . 9
2.4 pyflakes . 10
2.5 flake8 . 11
2.6 black . 13
2.7 autopep8 . 14
2.8 yapf . 14
2.9 Conclusion . 15

3 Environment Management 17
3.1 virtualenv and virtualenvwrapper . 17
3.2 pipenv . 18
3.3 pip, requirement.txt and pipfile . 19
3.4 poetry . 20
3.5 A comparision of the tools . 21

4 Source code management 23
4.1 git . 23
4.2 github . 23
4.3 gitlab . 23
4.4 Continous Integration . 24

5 Documentation Tools 27
5.1 Markdown (.md) . 27
5.2 Restructured Text (.rst) . 27
5.3 Sphinx . 28

6 Deployment 29
6.1 Docker . 29
6.2 Fabric . 31

i

6.3 Ansible . 31
6.4 Google Cloud Platform . 31
6.5 Amazon Web Services . 45
6.6 Deploying a Django application . 47

7 Indices and tables 53

ii

Essential Python Tools Documentation, Release 3.7

Table of Contents: 1

Essential Python Tools Documentation, Release 3.7

2 Table of Contents:

CHAPTER 1

Interactive environments and debugging

1.1 Ipython

IPython (Interactive Python) is a command shell for interactive computing in python, originally developed to make
python easy and interactive, it offers introspection, rich media, shell syntax, tab completion, and history.

You can install Ipython via pip(pip install ipython) but we suggest installing IPython using the Python
Anaconda distribution.

Anaconda is an open-source Python distribution which provides us with many python tools. When installed, Anaconda
includes: core Python language, IPython, Jupyter Notebook and many data-science packages.

To use Ipython

$ ipython

IPython has more features than python like Syntax highlighting, Proper Intendation, tab-completion, documentation

Syntax highlighting

Tab-completion

3

https://ipython.org/
https://www.anaconda.com/download/
https://www.anaconda.com/download/

Essential Python Tools Documentation, Release 3.7

Documentation can be viewed by putting a ? after the command.

1.2 Jupyter

Jupyter Notebook is a open source application for writing and sharing code and text. It is one of the popular data
science tool in python.

It has replaced IPython notebook, which initially supported only python but now later started supporting many lan-
guages. IPython notebooks was started to make working with python easy and interactive. IPython provides python
backend (also known as kernel) for Jupyter

If you installed Python using Anaconda, then you have the Jupyter Notebook installed. To start the notebook

$ jupyter notebook

After starting Jupyter notebook, we’ll notice that a tab will open in a web browser open. It will run the Jupyter
Notebook on a local port, such as http://localhost:8888. It will list out the contents of the system in a directory format.
To create new “notebooks” just click “New” and then selecting the python version.

Using Jupyter Notebook we can create shareable files that can support live code, charts, graphs, math,
different forms of markup (Markdown, etc.), and much more.

To know more about ‘Jupyter Notebook’ check - http://jupyter-notebook.readthedocs.io/en/stable/

4 Chapter 1. Interactive environments and debugging

http://jupyter.org/
http://localhost:8888
http://jupyter-notebook.readthedocs.io/en/stable/

Essential Python Tools Documentation, Release 3.7

1.3 pdb and ipdb

1.3.1 pdb

pdb is a debugging tool that is part of python’s standard library. It is an interactive source code debugger for Python
programs.

Using pdb, we can set breakpoints at any point of our program to stop it and check for errors or the status of our
running program.

pbd help speed up the debugging process a lot faster than using simple print() statements every-
where.

The easiest way to use pdb is to call it in the code you’re working on.

import pdb; pdb.set_trace()

As soon as the interpreter reaches this line, we’ll receive a command prompt on the terminal where we’re running the
program. This is a general Python prompt, but with some new commands.

• l (list) - Display 11 lines around the current line.

• r (return) - Continue execution until the current function returns.

• b (break) - Set a breakpoint (depending on the argument provided).

• n (next) - Continue execution until the next line in the current function is reached.

• s (step) - Execute the current line, stop at the first possible occasion.

• j (jump) - Jump to the next line to be executed.

• c (continue) - Creates a breakpoint in the program execution.

for more commands check

If we want to run the application from the debugger and set breakpoints without any changes in the source code, then
we need to execute the application with the debugger, use the command

$ python -m pdb hello.py

1.3.2 ipdb

ipdb, the Ipython-enabled python debugger, with all pdb’s features and adds ipython support for the interactive shell,
like tab completion, color support, magic functions and more. We can use ipdb just as we use pdb.

1.3. pdb and ipdb 5

https://docs.python.org/3/library/pdb.html
https://en.wikipedia.org/wiki/Breakpoint
https://docs.python.org/3/library/pdb.html#debugger-commands

Essential Python Tools Documentation, Release 3.7

6 Chapter 1. Interactive environments and debugging

CHAPTER 2

Linters and formatters

2.1 PEP8

PEP8 is the official style guide for python. It is important to know the style-guide if you want to be a part of the
python-community.

PEP8 coding conventions are:

• Spaces are the preferred indentation method.

• Use 4 spaces per indentation level.

• Limit all lines to a maximum of 79 characters.

• Separate top-level function and class definitions with two blank lines.

• Method definitions inside a class are surrounded by a single blank line.

• Imports should be grouped in the following order:

– Standard library imports.

– Related third party imports.

– Local application/library specific imports.

– A blank line between each group of imports.

2.2 pycodestyle

Pycodestyle (Formerly PEP8) is the official linter tool to check the python code against the style conventions of PEP8
python.

To install it: pip install pycodestyle.

Let us take a small example script to test pycodestyle

We will create a test script file test_script.py and use it as an example for all the linters.

7

https://www.python.org/dev/peps/pep-0008/?
https://github.com/PyCQA/pycodestyle

Essential Python Tools Documentation, Release 3.7

from __future__ import print_function
import os, sys
import logging
from .. import views

class DoSomething(SomeCommand) :

def __init__(self):
for i in range(1,11):

if self.number == i:
print("matched")

else:
print('not matched')

def check_user(self):
if self.user: return True
else : return False

If we run pycodestyle: $ pycodestyle {source_file_or_directory}

$ pycodestyle test_script.py
test_script.py:2:10: E401 multiple imports on one line
test_script.py:6:1: E302 expected 2 blank lines, found 1
test_script.py:6:31: E203 whitespace before ':'
test_script.py:9:25: E231 missing whitespace after ','
test_script.py:13:37: W291 trailing whitespace
test_script.py:16:21: E701 multiple statements on one line (colon)
test_script.py:16:34: W291 trailing whitespace
test_script.py:17:13: E271 multiple spaces after keyword
test_script.py:17:14: E203 whitespace before ':'
test_script.py:17:15: E701 multiple statements on one line (colon)
test_script.py:17:29: W291 trailing whitespace

To see the summary, use --statistics -qq $ pycodestyle --statistics -qq
{source_file_or_directory}

$ pycodestyle --statistics -qq test_script.py
2 E203 whitespace before ':'
1 E231 missing whitespace after ','
1 E271 multiple spaces after keyword
1 E302 expected 2 blank lines, found 1
1 E401 multiple imports on one line
2 E701 multiple statements on one line (colon)
3 W291 trailing whitespace

We can also make pycodestyle show the error and the description of how to solve the error by using --show-source
--show-pep8

$ pycodestyle --show-source --show-pep8 {source_file_or_directory}

$ pycodestyle --show-source --show-pep8 test_script.py
test_script.py:2:10: E401 multiple imports on one line
import os, sys

^
Place imports on separate lines.
...
...
...

8 Chapter 2. Linters and formatters

Essential Python Tools Documentation, Release 3.7

To customise pycodestyle we can configure it at the project-level or in user-level. It is better to configure at the project
level as the style usually varies for every-project.

To configure a project’s pycodestyle create a tox.ini Or a setup.cfg

And add

[pycodestyle]
ignore = E501, W291
max-line-length = 88
statistics = True

In the above file ,

• [pycodestyle] tells this is the pycodestyle section

• we are telling to ignore the Error E501 (which is a line-length error) and Warning W291 (trailing whites-
pace warning).

• mentioning the max-line-length to be 88.

• and to show the statistics with every check

Table 1: PEP8 Error/Warning code
Error/ Warning Meaning
Starting with E. . . Errors
Starting with W. . . Warnings
100 type . . . Indentation
200 type . . . Whitespace
300 type . . . Blank lines
400 type . . . Imports
500 type . . . Line length
600 type . . . Deprecation
700 type . . . Statements
900 type . . . Syntax errors

2.3 pylint

Pylint is a python linter which checks the source code and also acts as a bug and quality checker. It has more verification
checks and options than just PEP8(Python style guide).

This is the most commonly used tool for linting in python.

It includes the following features:

• Checking the length of each line

• Checking if variable names are well-formed according to the project’s coding standard

• Checking if declared interfaces are truly implemented.

To install it: pip install pylint.

Usage: pylint {source_file_or_directory}

Using the file test_script.py as an example

2.3. pylint 9

https://www.pylint.org/

Essential Python Tools Documentation, Release 3.7

$ pylint test_script.py
No config file found, using default configuration

************* Module test_script
C: 6, 0: No space allowed before :
class DoSomething(SomeCommand) :

^ (bad-whitespace)
C: 9, 0: Exactly one space required after comma

for i in range(1,11):
^ (bad-whitespace)

C: 13, 0: Trailing whitespace (trailing-whitespace)
C: 16, 0: Trailing whitespace (trailing-whitespace)
C: 17, 0: Final newline missing (missing-final-newline)
C: 17, 0: No space allowed before :

else : return False
^ (bad-whitespace)

C: 1, 0: Missing module docstring (missing-docstring)
C: 2, 0: Multiple imports on one line (os, sys) (multiple-imports)
E: 4, 0: Attempted relative import beyond top-level package (relative-beyond-top-
→˓level)
C: 6, 0: Missing class docstring (missing-docstring)
E: 6,18: Undefined variable 'SomeCommand' (undefined-variable)
C: 15, 4: Missing method docstring (missing-docstring)
R: 16, 8: The if statement can be replaced with 'return bool(test)' (simplifiable-if-
→˓statement)
R: 16, 8: Unnecessary "else" after "return" (no-else-return)
C: 16,22: More than one statement on a single line (multiple-statements)
R: 6, 0: Too few public methods (1/2) (too-few-public-methods)
W: 2, 0: Unused import sys (unused-import)
W: 2, 0: Unused import os (unused-import)
W: 3, 0: Unused import logging (unused-import)
W: 4, 0: Unused import views (unused-import)

--
Your code has been rated at -10.00/10 (previous run: -10.00/10, +0.00)

As we can see pylint has more error/warning checks and options than pep8. And it is more descriptive.

To customise pylint we can configure it at the project-level, user-level or global-level .

• create a /etc/pylintrc for default global configuration

• create a ~/pylintrc for default user configuration

• Or create a pylintrc file

To create a pylintrc file pylint --generate-rcfile > pylintrc , which creates a template pylintrc(with
comments) which can be customised as required.

For example if we want the max line lenght to be 88, then we have to set the max-line-length to 88 .

2.4 pyflakes

pyflakes is a verification tool(linter) which checks for Python files for errors. Pyflakes doesn’t verify the style at all
but it verifies only logistic errors like the syntax tree of each file individually.

To install it: pip install pyflakes.

Let us take the same example script to test pyflakes

10 Chapter 2. Linters and formatters

https://pypi.org/project/pyflakes/

Essential Python Tools Documentation, Release 3.7

Usage: pyflakes {source_file_or_directory}

Using the file test_script.py as an example

$ pyflakes test_script.py
test_script.py:2: 'sys' imported but unused
test_script.py:2: 'os' imported but unused
test_script.py:3: 'logging' imported but unused
test_script.py:4: '..views' imported but unused
test_script.py:6: undefined name 'SomeCommand'

It detected newly “library imported but unused” and “Undefined name”, it doesn’t verify the style but verify only
logistic error.

If we like Pyflakes but also want stylistic checks, we can use flake8, which combines Pyflakes with style checks against
PEP 8

2.5 flake8

Flake8 is just a wrapper around pyflakes, pycodestyle and McCabe script (circular complexity checker) (which is used
to detect complex-code).

If we like Pyflakes but also want stylistic checks, we can use flake8, which combines Pyflakes with style checks against
PEP 8

To install it: pip install flake8.

Usage: flake8 {source_file_or_directory}

To get statics also flake8 {source_file_or_directory} --statistics

Using the file test_script.py as an example

$ flake8 test_script.py --statistics
test_script.py:2:1: F401 'os' imported but unused
test_script.py:2:1: F401 'sys' imported but unused
test_script.py:2:10: E401 multiple imports on one line
test_script.py:3:1: F401 'logging' imported but unused
test_script.py:4:1: F401 '..views' imported but unused
test_script.py:6:1: E302 expected 2 blank lines, found 1
test_script.py:6:19: F821 undefined name 'SomeCommand'
test_script.py:6:31: E203 whitespace before ':'
test_script.py:9:25: E231 missing whitespace after ','test_script.py:13:37: W291
→˓trailing whitespace
test_script.py:16:21: E701 multiple statements on one line (colon)
test_script.py:16:34: W291 trailing whitespace
test_script.py:17:13: E271 multiple spaces after keyword
test_script.py:17:14: E203 whitespace before ':'
test_script.py:17:15: E701 multiple statements on one line (colon)test_script.
→˓py:17:29: W291 trailing whitespace
2 E203 whitespace before ':'
1 E231 missing whitespace after ','
1 E271 multiple spaces after keyword
1 E302 expected 2 blank lines, found 1
1 E401 multiple imports on one line
2 E701 multiple statements on one line (colon)
4 F401 'os' imported but unused

(continues on next page)

2.5. flake8 11

http://flake8.pycqa.org/en/latest/
https://github.com/PyCQA/mccabe

Essential Python Tools Documentation, Release 3.7

(continued from previous page)

1 F821 undefined name 'SomeCommand'
3 W291 trailing whitespace

The output is formatted as:

file path : line number : column number : error code : short description

By adding the --show-source option, it’ll be easier to find out what parts of the source code need to be revised.

$ flake8 test_script.py --show-source
test_script.py:2:1: F401 'os' imported but unused
import os, sys
^
test_script.py:2:1: F401 'sys' imported but unused
import os, sys
^
test_script.py:2:10: E401 multiple imports on one line
import os, sys

^
test_script.py:3:1: F401 'logging' imported but unused
import logging
^
...
...
...

We can see the result of pep8 (error code is Exxx and Wxxx) and pyflakes (error code is Fxxx) are output together.

Flake8 Error code meaning

The error code of flake8 are :

• E***/W***: Errors and warnings of pep8

• F***: Detections of PyFlakes

• C9**: Detections of circulate complexity by McCabe-script

Flake8 can be customised/configured in :

• Toplevel User directory, in ~/.config/flake8 Or

• In a project folder by one of setup.cfg, tox.ini, or .flake8.

To customize flake8

[flake8]
ignore = D203
exclude = .git,__pycache__,docs/source/conf.py,old,build,dist, *migrations*
max-complexity = 10

This is same as the below one line command

$ flake8 --ignore D203 \
--exclude .git,__pycache__,docs/source/conf.py,old,build,dist \
--max-complexity 10

12 Chapter 2. Linters and formatters

Essential Python Tools Documentation, Release 3.7

2.6 black

black is a python code auto-formatter. Black reformats entire files in place and also formats the strings to have double-
qoutes.

Black is not configurable(except for line-length).

To install it: pip install black.

Usage: black {source_file_or_directory}

The response we got when we did black test_script.py is

Using the file test_script.py as an example

And the formatted code is

from __future__ import print_function
import os, sys
import logging
from .. import views

class DoSomething(SomeCommand):
def __init__(self):

for i in range(1, 11):
if self.number == i:

print("matched")
else:

print("not matched")

def check_user(self):
if self.user:

return True
else:

return False

To customise black we have to add this section in pyproject.toml

[tool.black]
line-length = 90
py36 = true
include = '\.pyi?$'
exclude = '''
/(

\.git
| \.mypy_cache
| \.tox
| \.venv
| _build
| buck-out
| build
| dist

(continues on next page)

2.6. black 13

https://black.readthedocs.io/en/stable/

Essential Python Tools Documentation, Release 3.7

(continued from previous page)

)/
'''

In the above section, we have modified the line-lenght to 90, and specified the python version to 3.6

2.7 autopep8

autopep8 automatically formats Python code to the PEP8 style. It fixes most of the formatting issues that are reported
by pycodestyle.

To install it: pip install autopep8

Usage(to format a file): autopep8 --in-place {file_name}

here --in-place is to make changes to files in place.

Using the file test_script.py as an example

This is the formatted code.

from __future__ import print_function
import os
import sys
import logging
from .. import views

class DoSomething(SomeCommand):

def __init__(self):
for i in range(1, 11):

if self.number == i:
print("matched")

else:
print('not matched')

def check_user(self):
if self.user:

return True
else:

return False

To configure autopep8 we have to add this section [pep8] in setup.cfg :

[pep8]
ignore = E226,E302,E41
max-line-length = 160

2.8 yapf

Yet another Python formatter is another auto-formatter which is maintained by google. yapf is highly configurable
and it has different base configurations, like pep8, Google and Facebook.

To install it: pip install yapf

14 Chapter 2. Linters and formatters

https://pypi.org/project/autopep8/
https://github.com/google/yapf

Essential Python Tools Documentation, Release 3.7

Usage: yapf -i {source_file_or_directory}

here -i is to make changes to files in place.

This is the formatted code.

from __future__ import print_function
import os, sys
import logging
from .. import views

class DoSomething(SomeCommand):
def __init__(self):

for i in range(1, 11):
if self.number == i:

print("matched")
else:

print('not matched')

def check_user(self):
if self.user: return True
else: return False

To configure yapf we have to add this section [yapf] in setup.cfg :

[yapf]
ignore = E226,E302
max-line-length = 96

2.9 Conclusion

Linting:

Pylint and flake8 have the most detailed way of showing the error and warnings(and it also gives the code
rating).

2.9. Conclusion 15

Essential Python Tools Documentation, Release 3.7

16 Chapter 2. Linters and formatters

CHAPTER 3

Environment Management

3.1 virtualenv and virtualenvwrapper

3.1.1 virtualenv

virtualenv is a popular tool for creating isolated python environments without affecting other projects.

It is really helpful if you are having more than one project at a time, so that there won’t be any version clashes among
the packages of the projects. Example , if you want to work with more python2.7 for one project and python3.5 for
another project, virtualenv solves the purpose.

It creates an environment that has its own isolated installation directories, that doesn’t share libraries with other vir-
tualenv environments.

We have to install it globally: [sudo] pip install virtualenv

Once we have virtualenv installed, we have to create the a directory for our virtualenv mkdir ~/
virtualenvironment

3.1.2 virtualenvwrapper

virtualenvwrapper is an just like an extension to virtualenv which simplifies the commands to use and manage.

To install it: [sudo] pip install virtualenvwrapper

After installing, Add these lines to your shell startup file (.bashrc, .profile, etc.)

export WORKON_HOME=$HOME/.virtualenvs
export PROJECT_HOME=$HOME/Devel
source /usr/local/bin/virtualenvwrapper.sh

After editing the file, reload the startup file (e.g., run source ~/.bashrc).

We tell the startup file to set the location where the virtual environments should live, the location of your development
project directories, and the location of the script installed with this package:

17

https://virtualenv.pypa.io/en/stable/
http://virtualenvwrapper.readthedocs.io/en/latest/

Essential Python Tools Documentation, Release 3.7

Next, we can create the virtualenv with command mkvirtualenv This command creates the virtualenv and auto-
matically loads it for us.

$ mkvirtualenv testEnv
New python executable in /Users/anmol/.virtualenvs/testEnv/bin/python2.7
Also creating executable in /Users/anmol/.virtualenvs/testEnv/bin/python
Installing setuptools, pip, wheel...done.
virtualenvwrapper.user_scripts creating /Users/anmol/.virtualenvs/testEnv/bin/
→˓predeactivate
virtualenvwrapper.user_scripts creating /Users/anmol/.virtualenvs/testEnv/bin/
→˓postdeactivate
virtualenvwrapper.user_scripts creating /Users/anmol/.virtualenvs/testEnv/bin/
→˓preactivate
virtualenvwrapper.user_scripts creating /Users/anmol/.virtualenvs/testEnv/bin/
→˓postactivate
virtualenvwrapper.user_scripts creating /Users/anmol/.virtualenvs/testEnv/bin/get_env_
→˓details
(testEnv) $

To come out of the virtualenv use command $ deactivate

If you want to create a virtualenv with a different version of python like python3(which should be globally installed)
then specify the python version using -p python3

My system created the virtualenv with my default python which is python2.7. If you also have python3 installed
in your system and you want to create the virtualenv with python3 then create the virtualenv with this command
mkvirtualenv testEnv -p python3

$ mkvirtualenv testEnv -p python3
Running virtualenv with interpreter /usr/local/bin/python3
Using base prefix '/usr/local/Cellar/python3/3.6.4_2/Frameworks/Python.framework/
→˓Versions/3.6'
New python executable in /Users/anmol/.virtualenvs/testEnv/bin/python3
Installing setuptools, pip, wheel...done.
(testEnv) $ python -V
Python 3.6.4
(testEnv) $

To list all virtualenvs present in the system run command: $ workon workon lists all the virtualenvs present in the
system.

To start working in a virtualenv: $ workon <name_of_virtualenv>

To remove/delete a virtualenv: $ rmvirtualenv <name_of_virtualenv>

3.2 pipenv

Pipenv is a tool for creating a separate/isolated working environment which manages the dependency versions. It
creates virtualenv for every project in the project folder.

To install it: [sudo] pip install pipenv

Next, to create a pipenv for a project, go to the project directory and type

$ pipenv install <package> // like pipenv install requests

18 Chapter 3. Environment Management

https://docs.pipenv.org/

Essential Python Tools Documentation, Release 3.7

$ pipenv install -r requirements.txt // if our dependencies are listed in a file

$ pipenv --python python3 install <package> // with different version of python
→˓like python3

after creating a pipenv, 2 files will be created Pipfile and Pipfile.lock which lists all our packages and these files get
updated whenever we install/update/delete any package.

If we want to add a package for only development/testing then use :code:‘pipenv install -d ‘

To activate this project’s virtualenv, run pipenv shell

And to run a command inside the virtualenv with pipenv run . example pipenv run python hello.py

And to exit the virtualenv run exit

3.3 pip, requirement.txt and pipfile

Pip (Python’s package manager) is a package management system used to install and manage software packages
written in Python.

To check pip version: pip -V

To get pip:

First download pip

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

Then run this command

python get-pip.py

List all packages installed : pip freeze

To install/unistall a package using pip:

pip install <pacakge> // install
pip install <pacakge>==1.2.2 // install a specific version
pip uninstall <pacakge> // uninstall

Requirement.txt is a text file which stores the list of all the pip packages with versions which are required to run the
project.

To create a requirements.txt file do pip freeze > requirements.txt

A sample requirements.txt file

Django==2.0.3
djangorestframework==3.7.7
django-rest-swagger==2.1.2
coreapi==2.3.3

Pipfile is just a replacement to the requirement.txt file. pipfile is generated when using pipenv.

Pipfile lists all the packages by separating the development/testing packages from the main packages used
and also mentions the python version it uses.

A sample Pipfile

3.3. pip, requirement.txt and pipfile 19

https://pip.pypa.io/en/stable/

Essential Python Tools Documentation, Release 3.7

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[packages]
coverage = "*"
requests = "*"

[dev-packages]
pylint = "*"

[requires]
python_version = "3.6"

3.4 poetry

Poetry is a tool for dependency management and packaging in Python. It allows us to declare the libraries your project
depends on and it will manage (install/update) them for us.

Poetry can be installed using pip, but the recommended way to install is

curl -sSL https://raw.githubusercontent.com/sdispater/poetry/master/
get-poetry.py | python

To use poetry run this command: poetry init

This command will help you create a pyproject.toml file interactively by prompting you to provide basic infor-
mation about your package.

pyproject.toml is the main file which manages all the dependencies.

pyproject.toml file contains all the details of the project. It mentions the dependencies/dev-dependencies
and also other details like name, description, author, version etc of project.

A sample pyproject.toml

[tool.poetry]
name = "base-ing"
version = "0.1.0"
description = ""
authors = ["anmol <anmol@agiliq.com>"]

[tool.poetry.dependencies]
python = "*"

[tool.poetry.dev-dependencies]

To add/remove a package : poetry add <package> poetry remove <package>

To add a package as a development-dependency: poetry add <package> --dev

To run a command in poetry poetry run python hello.py

20 Chapter 3. Environment Management

https://poetry.eustace.io/
https://poetry.eustace.io/docs/pyproject/

Essential Python Tools Documentation, Release 3.7

3.5 A comparision of the tools

3.5.1 Python/pip Standard

Both pipenv and virtualenvwrapper are officially recommended and are considered as standards.

3.5.2 Easy of use.

Pipenv and virtualenvwrapper both are easy to use. .. Poetry is

For beginners I suggest, start with virtualenv/virtualenvwrapper and then use pipenv .

3.5. A comparision of the tools 21

Essential Python Tools Documentation, Release 3.7

22 Chapter 3. Environment Management

CHAPTER 4

Source code management

4.1 git

Git is a version control system for tracking changes in computer files or a folder and coordinating work on those files
among multiple people.

Git/Version Control System is the basic tool in software development.

The main purpose of Git is to manage software development projects and its files, as they are changing over time. It
stores the information in a repository.

To install git check this .

To learn git check official-tutorial and github-tutorial

4.2 github

GitHub is a web-based hosting service for version control using Git. It provides access control and several collabora-
tion features such as issue tracking, feature requests, documentation, and wikis for every project.

With git, we can collaborate with other developers, track all our work via commits, and revert to any
previous version of our code even if we accidentally delete something.

GitHub projects can be public or private and every publicly shared code is freely open to everyone. We can have
private projects as well, though, they require a paid GitHub plan. Public repositories on Github are often used to share
Open Source Software

It is the most-widely used web-based hosting service, and it has the largest number of open-source projects.

4.3 gitlab

GitLab is a web-based and self-based hosting service for version control using Git. Gitlab is free and open-source.

23

https://git-scm.com/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/docs/gittutorial
https://try.github.io/
https://github.com/
https://about.gitlab.com/

Essential Python Tools Documentation, Release 3.7

Gitlab offers unlimited free public/private repositories, where as Github offers unlimited public repositories
only(private repositories require a paid plan)

GitLab offers all the features of Github plus builtin CI/CD service (Continuous Integration & Continuous Delivery),
and more authentication levels.

Gitlab(Community Edition) is open-source and can be installed in private servers.

4.4 Continous Integration

Continuous Integration (CI) is a development practice which automates the build and testing process of the code.
Continuous Integration automates the build and testing processes. The main objective of CI is to test code for every
push made to the repository. We need to have a testing framework for the test in CI.

Each push is verified by an automated build and tests, individual changes are immediately tested
and reported on when they are added to a repository, allowing developers to detect problems early.

CI encourages developers to integrate their code into a main branch of a shared repository. Instead of building out fea-
tures in isolation and integrating them at the end of a development cycle, code is integrated with the shared repository
by each developer multiple times throughout the day.

CI makes code integration a simple, fast process that is part of the everyday development workflow in order to reduce
integration costs and respond to defects early.

4.4.1 gitlab-ci

Gitlab Continuous Integration(CI) is a open-source CI service that is included in gitlab and can be used for all projects
in gitlab.

To use GitLab CI, you first need to add a .gitlab-ci.yml file to the root directory of your repository, as well as
configure your GitLab project to use a Runner. Afterwards, every commit or push will trigger the CI pipeline that has
three stages: build, test and deploy.

To set up .gitlab-ci.yml file follow this official doc

4.4.2 circleci

Circleci is a cloud-based continuous integration server. It supports containers, OSX, Linux and can run within a private
cloud or our own data center. that supports any language that builds on Linux or macOS.

It is available in both cloud-based and self-hosted.

Setting up CircleCI:

• Sign-in to circleci.com and link your project.

• After that activate the service hook to that repo in the profile page of cirlceci .

• Add circle.yml to the project

To set up .circle-ci.yml file follow this official doc and for python apps - config circleci for python apps

4.4.3 Travis CI

Travis CI is a hosted continous integration service used to build and test the projects hosted at github.com. It is free
for all open-source projects hosted on Github.com .

24 Chapter 4. Source code management

https://about.gitlab.com/features/gitlab-ci-cd/
https://docs.gitlab.com/ee/ci/quick_start/
https://circleci.com/
https://circleci.com/docs/enterprise/quick-start/
https://circleci.com/docs/2.0/language-python/
https://travis-ci.org/

Essential Python Tools Documentation, Release 3.7

Travis CI builds and runs the tests every time we push the code to the github repo or put a pull request to the repo.

To use travis-ci we must add a file .travis.yml to our repository. And link our github account with travis-ci by
logging in to travis-ci website

Sample .travis.yml file

language: python
python:
- 2.7
- 3.6

command to install dependencies
install:
- pip install -r requirements.txt

command to run tests
script:
- pytest # or py.test To test for Python versions 3.5 and below

branches:
- master
- dev

This file will get our project tested on all the listed Python versions by running the given script, and it will build the
master and dev branch only.

The CI Environment uses separate virtualenv instances for each Python version.

By default Travis CI uses pip to manage Python dependencies. If you have a requirements.txt file, Travis CI runs
pip install -r requirements.txt during the install phase of the build.

Python projects need to provide the script key in their .travis.yml to specify what command to run tests with.

4.4. Continous Integration 25

https://travis-ci.org/

Essential Python Tools Documentation, Release 3.7

26 Chapter 4. Source code management

CHAPTER 5

Documentation Tools

5.1 Markdown (.md)

Markdown is the most widely used markup language and it is often used to format readme files.

Text written in markdown are easy to read and can be easily converted to HTML.

There are different versions of markdown used , and github suggested one is the most popular.

5.2 Restructured Text (.rst)

reStructuredText is an easy-to-read, plaintext markup syntax and parser system.

When compared reStructuredText is more formalised and powerful than markdown.

It is useful for in-line program documentation (such as Python docstrings), for quickly creating simple web pages, and
for standalone documents.

reStructuredText is designed for extensibility for specific application domains.

5.2.1 When to use markdown and reStructuredText

• If you want to write a gist or a single page readme then it is better to use markdown.

• It you want to a write a documentation consisting of many in-line programs and tables then it is better to use
reStructuredText.

So, which one to use ? Generally it is - For small documentation use markdown otherwise use reStructuredText.

27

https://daringfireball.net/projects/markdown/
https://help.github.com/articles/basic-writing-and-formatting-syntax/
http://docutils.sourceforge.net/rst.html

Essential Python Tools Documentation, Release 3.7

5.3 Sphinx

Sphinx is a documentation generator/tool which converts reStructuredText files (.rst) into HTML websites or to other
formats like PDF, LaTeX, Epub, Texinfo.

Sphinx support Themes and extensions.

Btw this document is built using Sphinx.

28 Chapter 5. Documentation Tools

http://www.sphinx-doc.org/en/master/

CHAPTER 6

Deployment

6.1 Docker

Docker is an open-source tool for creating, deploying, and running applications by using containers.
Containers allow a developer to package up an application with all of the parts it needs, such as libraries and
other dependencies, and ship it all out as one package.

By using containers, the application will run on any machine regardless of any customized settings that machine might
have that could differ from the machine used for writing and testing the code.

Containerization is an approach in which an application or service, its dependencies, and its configuration (abstracted
as deployment manifest files) are packaged together as a container image.

The containerized application can be tested as a unit and deployed as a container image instance to the
host operating system (OS).

Docker is an open-source tool for automating the deployment of applications.

6.1.1 Docker Compose

Compose is a tool for running multi-container applications like for example a container with a DataBase and an
application. We can start/stop multiple services using compose with a single command.

We can create multiple compose files each for production, staging, development, testing, as well as CI,
and each will be isolated with each other.

To use compose

• Create a Dockerfile where all our environment configuration and initial packages are mentioned.

• Create a file docker-compose.yml , and mention all the services which we would be using.

• Finally run docker-compose up .

Dockerfile

29

https://www.docker.com/what-docker
https://docs.docker.com/compose/overview/

Essential Python Tools Documentation, Release 3.7

FROM python:3.4-alpine # 1
ADD . /code #2
WORKDIR /code #3
ADD requirements.txt /code/ #4
RUN pip install -r requirements.txt #5

In the above file we

• In #1 we are building an image starting with the Python 3.4 image

• In #2 and #3 we are adding directory :code:‘ . ‘ into the path /code in the image and making it the working
directory.

• In #4 and #5 we adding the requirements file to the /code/ directory and installing all requirements.

docker-compose.yml

version: '3' # 1

services: # 2
web:

build: . # 3
command: python3 manage.py runserver 0.0.0.0:8000 #4
volumes: # 5
- .:/code
ports: #6
- "8000:8000"
depends_on: #7
- db

db:
image: postgres

• In #1 we mention the docker version (which is 3)

• #2 defines two services, web and db.

– The web service uses an image that’s built from the Dockerfile

– The db service uses a public Postgres image pulled from the Docker Hub registry.

• #3 tells to find the the dockerfile in the current directory

• #4 is a command to run the service .

• #5 tells the host paths for that service.

• #6 forwards the exposed port 8000 on the container to port 8000 on the host machine.

• #7 mentions the dependency between services

To use the docker compose , we use commands

$ docker-compose up # to create and start the containers

$ docker-compose build #to build or rebuild services

$ docker-compose up --build # build the services and start the containers

We write different ‘docker-compose‘ files for each Development, Testing, & Production.

30 Chapter 6. Deployment

Essential Python Tools Documentation, Release 3.7

6.2 Fabric

Fabric is a high level Python (2.7, 3.4+) library designed to execute shell commands remotely over SSH for application
deployment.

It provides a basic suite of operations for executing local or remote shell commands (normally or via sudo) and up-
loading/downloading files, as well as auxiliary functionality such as prompting the running user for input, or aborting
execution.

We can execute shell commands over SSH, so we only need to have SSH running on the remote machine.
It interact with the remote machines that we specify as if they were local.

Fabric can be used for many things, including deploying, restarting servers, stopping and restarting processes.

To install fabric pip install fabric

Fabric, provides a command line utility, fab which looks for a fabfile.py, which is a file containing Python code.

example fabfile:

from fabric.api import run
def diskspace():

run('df')

The above example provides a function to check free disk space, run command executes a remote command on all
specific hosts, with user-level permissions.

The fabfile should be in the same directory where we run the Fabric tool. We write all our functions, roles, configura-
tions, etc in a fabfile.

6.3 Ansible

Ansible is an automation tool to deploy our applications. It gives us the power to deploy multi-tier applications reliably
and consistently, all from one common framework.

Ansible is a configuration management and provisioning tool used to automate deployment tasks over SSH.

Ansible helps to automate :

• Application deployment: Make DevOps easier by automating the deployment of internally developed applica-
tions to our production systems.

• Configuration management: Change the configuration of an application, OS, or device; start and stop services;
install or update applications; implement a security policy; or perform a wide variety of other configuration tasks.

• Set up the various servers needed in our infrastructure.

6.4 Google Cloud Platform

Google Cloud Platform(GCP) is a suite of cloud computing services offered by Google.

The platform includes a range of hosted services for compute, storage and application development that run on Google
hardware. Google Cloud Platform services can be accessed by software developers, cloud administrators and other
enterprise IT professionals over the public internet or through a dedicated network connection.

The core cloud computing products in Google Cloud Platform include:

6.2. Fabric 31

http://www.fabfile.org/
https://www.ansible.com/
https://console.cloud.google.com/

Essential Python Tools Documentation, Release 3.7

• Google Compute Engine, is an infrastructure-as-a-service (IaaS) offering that provides users with virtual ma-
chine instances for workload hosting.

• Google App Engine, is a platform-as-a-service (PaaS) offering that gives software developers access to
Google’s scalable hosting. Developers can also use a software developer kit (SDK) to develop software products
that run on App Engine.

• Google Cloud Storage, is a cloud storage platform designed to store large, unstructured data sets. Google also
offers database storage options, including Cloud Datastore for NoSQL nonrelational storage, Cloud SQL for
MySQL fully relational storage and Google’s native Cloud Bigtable database.

• Google Kubernetes Engine, is a managed, production-ready orchestrated environment for deploying container-
ized applications that run within Google’s public cloud. It brings our latest innovations in developer productivity,
resource efficiency, automated operations, and open source flexibility to accelerate your time to market.

Let us see an example tutorial below which deploys a django application on GCP using Kubernetes

This tutorial should help to deploy a django application on a Kubernetes Cluster. Before starting this tutorial, the user
is expected to have basic knowledge of GKE, Django, PostgreSQL and Docker

6.4.1 Understanding Kubernetes

Before we jump into the tutorial, lets have a basic understanding of what kubernetes is and how will it be useful for us
to deploy our django application.

What is Kubernetes?

Kubernetes, at its basic level, is a system for running & co-ordinating containerized applications across a cluster of
machines. It is a platform designed to completely manage the life cycle of containerized applications and services
using methods that provide predictability, scalability, and high availability.

To know more about kubernetes, visit here

Moving on, as a part of this tutorial we’ll be deploying Polls API, from here

Local Deployment of Polls API

Let’s first clone our sample django application from

git clone https://github.com/yvsssantosh/django-polls-rest.git

Just to make sure we’re on master branch, run the command git checkout master

To test the application locally, let’s create a virtual environment, and test the server

Creating a virtual environment
mkvirtualenv pollsapi

Installing current project requirements
pip install -r requirements.txt

Connect to postgres
export POSTGRES_USER=pollsdb
export POSTGRES_DB=polls_admin
export POSTGRES_PASSWORD=polls_password
export POLLSAPI_PG_HOST=127.0.0.1

(continues on next page)

32 Chapter 6. Deployment

https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes
https://www.github.com/yvsssantosh/django-polls-rest

Essential Python Tools Documentation, Release 3.7

(continued from previous page)

Running migrations
python manage.py migrate

Start the local server
python manage.py runserver 0.0.0.0:8000

Now that we have tested on local server, lets create a new kubernetes cluster and deploy our application on it.

Setting up Google Cloud SDK

For instructions to setup Google Cloud SDK navigate to https://cloud.google.com/sdk

Read the installation instructions and setup accordingly. Once done, check the installation status by running the
command

$ gcloud -v

It should show an output similar to this:

Setting up kubectl command line

To manage and maintain a kubernetes cluster from our desktop/laptop we need to setup kubectl command line. It can
be done using the command

gcloud components install kubectl

6.4. Google Cloud Platform 33

https://cloud.google.com/sdk

Essential Python Tools Documentation, Release 3.7

Once the installation finishes, we should see something like this:

Creating a kubernetes cluster

Navigate to https://console.cloud.google.com. Select an existing project or create a new one, based on
requirement.

Then click on Kubernetes Engine from the navigate menu which would result in the following page

Create a new cluster. I’ve created a cluster based on the following settings

Cluster name : pollsapi
Location : Zonal
Zone : asia-south1-a
Cluster Version : 1.9.7-gke.3 (default)
Machine Type : Small (1 shared CPU with 1.7GB Memory)
Node Image : Core OS (cos)
Size : 2
Boot Disk Size : 20GB per Node

##
→˓# (continues on next page)

34 Chapter 6. Deployment

Essential Python Tools Documentation, Release 3.7

(continued from previous page)

Only for testing purposes as preemptible nodes are NOT recommended for Production
→˓#
##
→˓#

Preemptible Nodes : Yes

Please be patient as it takes some time to create the cluster

Once the cluster is created, we’ll be able to see a tick mark beside the name of the cluster.

Now click on Connect and copy the command shown, and paste it in terminal.

Once connected run the command kubectl get all.

Now that the cluster is up and running, lets package our application into a containerized one using docker.

6.4. Google Cloud Platform 35

Essential Python Tools Documentation, Release 3.7

Setting up Google Container Registry using Docker

Configuring docker with gcloud:

gcloud auth config-docker

Once docker is configured, we are ready to build the image.

Build the image
Common format to push an image to google container registry is gcr.io/$PROJECT_ID/
→˓$IMAGE_NAME:$TAG

export PROJECT_ID=YOUR_PROJECT_ID_HERE
export IMAGE_NAME=YOUR_IMAGE_NAME_HERE
export TAG=YOUR_IMAGE_TAG (optional, default is `latest`)

In my case, giving the tag as v1.0.0 (default is latest)
docker build -t gcr.io/test-gcp-208915/pollsapi:v1.0.0 .
(Note the . in the end)

Push the image
docker push gcr.io/test-gcp-208915/pollsapi:v1.0.0

36 Chapter 6. Deployment

Essential Python Tools Documentation, Release 3.7

Once the image has been pushed, paste the push URL in browser. It will ask you to sign in into google account which
has been used to configure this cluster (if not already signed in).

Since our image has been uploaded sucessfully, we need to setup the database next.

Setting up Helm Package Manager

The simplest way of setting up PostgreSQL on kubernetes is with the help of Helm Package Manager

For mac users, the command to install helm (using brew) is:

Install Helm
brew install kubernetes-helm

Setup Helm
helm init

• Note: Often during package installation i.e., helm install --name MY_RELEASE stable/
PACKAGE_NAME a common error is generated explaining tiller not having access to create cluster role bindings.
This usually happens if the user logged inside Google Cloud SDK doesn’t have proper access to create role bind-
ings or issues with helm installation.

If that error occurs, then run the following commands:

Completely uninstall helm
helm reset --force

Remove directories created by helm
sudo rm -r ~/.helm

Once helm is completely removed, create a clusterrolebinding and a serviceaccount for helm using the code below

rbac-config.yaml

apiVersion: v1
kind: ServiceAccount
metadata:

name: tiller

(continues on next page)

6.4. Google Cloud Platform 37

https://github.com/kubernetes/helm

Essential Python Tools Documentation, Release 3.7

(continued from previous page)

namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:

name: tiller
roleRef:

apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin

subjects:
- kind: ServiceAccount
name: tiller
namespace: kube-system

Create a file named rbac-config.yaml and run the following using kubectl command line

Creating Service Account and ClusterRoleBinding Tiller
kubectl create -f rbac-config.yaml

Once this is sucessfully done, initialize helm using

helm init --service-account tiller

And then run the command to install Postgresql in our cluster, as previously mentioned.

Setting up PostgreSQL

Before we setup PostgreSQL, lets create a namespace databases

Why create namespace databases?
This command is totally optional, but this is prefered this because I place all the
databases created in a single namespace so that they'll be easy to access.
kubectl create namespace databases

Before creating PostgreSQL using helm, lets understand few basics.

Default command of creation enables Persistent Volume Claim (PVC)
Instead of default postgres username, we are setting custom user.
So replace YOUR_POSTGRES_USER with desired username, in my case polls_admin &
MY_RELEASE_NAME, which in my case is pollsdb &
MY_DATABASE_NAME, which in my case is pollsdb

helm install --name MY_RELEASE_NAME stable/postgresql --set postgresUser=YOUR_
→˓POSTGRES_USER,postgresDatabase=MY_DATABASE_NAME --namespace databases

helm install --name pollsdb stable/postgresql --set postgresUser=polls_admin,
→˓postgresDatabase=pollsdb --namespace databases

If user wishes not to have a separate namespace then just ignore the last two words
i.e. --namespace databases

For more options on customizing postgres with custom parameters, see here

38 Chapter 6. Deployment

https://github.com/kubernetes/charts/tree/master/stable/postgresql

Essential Python Tools Documentation, Release 3.7

DO NOT FORGET to take a note of PGPASSWORD as seen in the NOTES section (above image) once postgres
has been created

Saving password of PostgreSQL into environemt varialble $PGPASSWORD
PGPASSWORD=$(kubectl get secret --namespace databases pollsdb-postgresql -o jsonpath="
→˓{.data.postgres-password}" | base64 --decode; echo)

Why save the password?
Since we have created a separate namespace for databases, secrets from one
→˓namespaces cannot be accessed from another
So in order to access the postgres password in the default namespace, we must
→˓create a new secret
Let's first convert our password into base64 encoding.

echo -n $PGPASSWORD | base64

MUST DO : Copy the generated value and replace it with `YOUR_ENCODED_PASSWORD` in
→˓the `polls-password-secret.yml`. Then create the secret.

kubectl create -f pollsdb-password-secret.yml

Now that the secret has been setup, lets migrate the data.
kubectl create -f polls-migration.yml

Wait for a minute and check the status of the migration using folling commands.
kubectl get jobs

In order to check the logs, identify the pod running the pod running migration.
kubectl get pods --show-all

Check the logs of the pod

(continues on next page)

6.4. Google Cloud Platform 39

Essential Python Tools Documentation, Release 3.7

(continued from previous page)

kubectl logs POD_NAME
kubectl logs polls-migration-5tf8z

Since the jobs have passed, there is no need for them to exist.
We can just delete the jobs using
kubectl delete -f polls-migration.yml

Serving Static Files

Now that we have the database up and running with our migrations, lets setup our static files. Rather than setting up
a separate NGINX server to serve static files, it’d be much simpler, secure & faster to use Google Cloud Storage as a
provider to serve static files.

Let’s first create a bucket in Google Cloud Storage. Visit https://console.cloud.google.com/storage

Make sure to the check if the right project is selected.

I’ve created a bucket using the following settings:

Name of Bucket : pollsapi-storage
Default Storage Class : Regional
Location : asia-south1 (Closest to my location)

Once the bucket is created, navigate to the settings icon as shown below

In the interoperability tab, create a new key. This key is required to let our django application send static files to our
bucket.

Now that we have ACCESS_KEY, ACCESS_SECRET and BUCKET_NAME, lets create a secrets file in kubernetes,
so that we can directly use these as environment variables in our django application.

40 Chapter 6. Deployment

https://console.cloud.google.com/storage

Essential Python Tools Documentation, Release 3.7

6.4. Google Cloud Platform 41

Essential Python Tools Documentation, Release 3.7

Lets first encode our secrets into base64 format

echo -n 'YOUR_SECRET_ACCESS_KEY_ID_HERE' | base64

Repeat the same for SECRET_ACCESS_KEY and BUCKET_NAME

Once we have the three generated values, replace them in cloud-storage-secrets.yml. After replacing the
values with appropriate ones, lets create our secret in kubernetes.

Creating cloud storage secret

kubectl create -f cloud-storage-secrets.yml

Now that the secrets are setup sucessfully, lets run the Job polls-collect-static.yml in order to collect static
files.

kubectl create -f polls-collect-static.yml

Note : It will take some time to collect the static files, as they are being
→˓uploaded
to our bucket from the batch job which we created just now.
We can just check the status of static files by either checking the logs
or by checking the job status itself

42 Chapter 6. Deployment

Essential Python Tools Documentation, Release 3.7

We have sucessfully setup static files in our application. But the major question is:

How are the static files being served?

To answer that question, lets see a small code snippet below

First, the packages Boto & Django Storages are required. Lets install them
These packages help us to connect to Google Cloud Storage
pip install boto django-storages

Check the following snippet now (from settings.py file under the STATIC_FILES_
→˓SETTINGS)
DEFAULT_FILE_STORAGE = 'storages.backends.gs.GSBotoStorage'
STATICFILES_STORAGE = 'storages.backends.gs.GSBotoStorage'

GS_ACCESS_KEY_ID = os.environ.get('GS_ACCESS_KEY_ID', None)
GS_SECRET_ACCESS_KEY = os.environ.get('GS_SECRET_ACCESS_KEY', None)
GS_BUCKET_NAME = os.environ.get('GS_BUCKET_NAME', None)

(continues on next page)

6.4. Google Cloud Platform 43

Essential Python Tools Documentation, Release 3.7

(continued from previous page)

Here we are configuring Google Cloud Storage as our default storage provider.
So whenever we run python manage.py collectstatic, all the static files
will be uploaded/updated in our Google Cloud Storage.
This also makes sure that all the static files (when required), will be served
from the location specified.

GS_ACCESS_KEY_ID, GS_SECRET_ACCESS_KEY and GS_BUCKET_NAME are the environment
variables which were created in `cloud-storage-secrets.yml` and are passed to our
application when the yaml file has been created.

Setting up Django Application

Now that we have the database ready with migrations, collected staticfiles, lets start our application.

Start application
kubectl create -f pollsapi.yml

Note: 1. Usually, we run the server using python manage.py runserver. This is NOT RECOMMENDED for
production purposes because of security concerns and extra memory usage. More on this can be found here Keeping
that in mind, this tutorial uses gunicorn server to run the application.

2. The service type is NodePort for our application, which means that we’ll be able to access our application once
we expose it using an Ingress.

44 Chapter 6. Deployment

https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/gunicorn/

Essential Python Tools Documentation, Release 3.7

Exposing our Application

Lets create an Ingress to expose our application.

kubectl create -f pollsapi-ingress.yml

Note that creating an ingress may take atleast 5 minutes, or sometimes even
more. Please be patient while an ingress is being created

To check the status of the ingress, see below

As expected, it took around 10 minutes for the ingress to setup properly. Navigate to the ingress address generated
i.e. http://35.241.42.232/ in order to access our application.

Documentation for Polls API

For any queries, please create a new issue here

6.5 Amazon Web Services

AWS is a cloud platform service from amazon, used to create and deploy any type of application in the cloud.

AWS is a Cloud platform service offering compute power, data storage, and a wide array of other IT
solutions and utilities for modern organizations. AWS was launched in 2006, and has since become one
of the most popular cloud platforms currently available.

We should have an account in AWS to use aws services. It offers many featured services for compute, storage,
networking, analytics, application services, deployment, identity and access management, directory services, security
and many more cloud services.

To use AWS for python, check https://aws.amazon.com/developer/language/python/

6.5. Amazon Web Services 45

http://35.241.42.232/
https://github.com/yvsssantosh/django-on-k8s/issues/new
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/developer/language/python/

Essential Python Tools Documentation, Release 3.7

46 Chapter 6. Deployment

Essential Python Tools Documentation, Release 3.7

We can use Boto3 (python package) which provides interfaces to Amazon Web Services, it makes us easy to integrate
our Python application, library, or script with AWS services

Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python devel-
opers to write software that makes use of services like Amazon S3(Simple storage service) and Amazon EC2(Elastic
Compute Cloud).

6.5.1 Amazon Elastic Cloud Compute (EC2)

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides resizeable computing capacity.

We use Amazon EC2 to launch a virtual servers and also configure security , networking, and manage storage. It
enables us to scale up or down depending the requirement.

• It provides virtual computing environments called as instances

• Various configurations of CPU, memory, storage, and networking capacity are available for our instances, known
as instance types.

6.5.2 Amazon Elastic Beanstalk

AWS Elastic Beanstalk is a service for deploying and scaling web applications and services. Elastic Beanstalk will
also run instances (Computing environments) EC2, and it has some additional components like Elastic Load Balancer,
Auto-Scaling Group, Security Group.

We pay only for the EC2 instances or S3 buckets and aws-DB we use and the other features like Elastic Load Balancer,
Auto-Scaling Group, Security Group in Elastic Beanstalk do not cost anything.

6.5.3 Amazon Lambda

Amazon Lambda is a computing service which automatically manages the server. AWS Lambda executes our code
only when needed and scales automatically, from a few requests per day to thousands per second.

We only pay for the compute time we comsume , and there will be no charge if the code is not running.

The initial purpose of lambda is to simplify building on-demand applications that are responsive to events. AWS starts
a Lambda instance within milliseconds of an event.

Deployment in AWS services:

Once we connect with the server using ssh , then the deployment will be same for all services. Which is same as in
the example mentioned in the next chapter

6.6 Deploying a Django application

This chapter tells the basics of deploying a django application using gunicorn, nginx and supervisord.

6.6. Deploying a Django application 47

https://github.com/boto/boto3
https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/lambda/
https://www.djangoproject.com/

Essential Python Tools Documentation, Release 3.7

6.6.1 Prerequisites

Knowledge

• Django basics

• (Optional) finish the book about django-rest-apis .

Resources

A Unix server for deploying the app , connected with a SSH(preferred).

Django is a free and open source web application framework, written in Python. Django has a lot of inbuilt set of
components that helps you to develop websites faster and easier.

Gunicorn is a simple, light-weight Python WSGI HTTP Server for UNIX. WSGI is the Web Server Gateway Interface.
It is a specification that describes how a web server communicates with web applications, and how web applications
can be chained together to process one request.

Nginx is a high-performance HTTP server, reverse proxy, load balancer and static files loader.

Supervisord is a process-control system which allows us to monitor and control a number of processes on UNIX
operating system.

Let’s start with our server

Once we create our server and let’s login to the server via SSH,

$ ssh root@IP_ADDRESS_OF_SERVER

Now we have to install the prerequisites, run these commands

$ sudo apt-get update
$ sudo apt-get install git python-pip python-dev virtualenv virtualenvwrapper
$ sudo apt-get install postgresql postgresql-contrib
$ pip install --upgrade pip

Now let’s configure the virtual-env wrapper

After setting-up the virtualenvwrapper, create a virtualenv

$ mkvirtualenv env-name

From within our virtual-env, install:

(env-name) $ pip install django gunicorn psycopg2

Let’s clone the repo in home folder, pull the application from Git, we use this repo https://github.com/anmolakhilesh/
django-polls-rest

$ cd ~
$ git clone https://github.com/anmolakhilesh/django-polls-rest

Now we have to add permissions to the manage.py file

48 Chapter 6. Deployment

https://books.agiliq.com/projects/django-api-polls-tutorial/en/latest/
https://www.djangoproject.com/
http://gunicorn.org/
http://wsgi.readthedocs.io/en/latest/
https://www.nginx.com/
http://supervisord.org/
https://books.agiliq.com/projects/essential-python-tools/en/latest/environment_management.html#virtualenvwrapper
https://github.com/anmolakhilesh/django-polls-rest
https://github.com/anmolakhilesh/django-polls-rest

Essential Python Tools Documentation, Release 3.7

$ cd /django-polls-rest/
$ chmod 755 manage.py

Now install the requirements

(env-name) $ pip install -r requirements.txt

Now set up PostgreSQL

Create a file .env and add these lines in that

$ export POSTGRES_DB = pollsdb
$ export POSTGRES_USER = polls_admin
$ export POSTGRES_PASSWORD = polls_password
$ export POLLSAPI_PG_HOST = 127.0.0.1

Create a postgres Database

$ sudo -u postgres psql

After running the above command, we will be logged inside PostgreSQL terminal, now lets create our db and user

> CREATE DATABASE pollsdb;
> CREATE USER polls_admin WITH PASSWORD 'polls_password';
> ALTER ROLE polls_admin SET client_encoding TO 'utf8';
> ALTER ROLE polls_admin SET default_transaction_isolation TO 'read committed';
> ALTER ROLE polls_admin SET timezone TO 'UTC';
> ALTER USER polls_admin CREATEDB;
> GRANT ALL PRIVILEGES ON DATABASE pollsdb TO polls_admin;

> \q # to quit the shell

Make sure that these details match the details in the .env file. Exit the PostgreSQL shell by typing \q .

Now as the DB is ready , we can run migrations command inside the repo folder.

migrations
(env-name) $ python manage.py migrate

Create a supervisor, let's
(env-name) $ python manage.py createsuperuser

Now postgres-db is setted, now we have to set up the server

Using gunicorn

(env-name) $ pip install gunicorn

After installing gunicorn , now run it

starts the server
(env-name) $ gunicorn polls_rest.wsgi

6.6. Deploying a Django application 49

Essential Python Tools Documentation, Release 3.7

It will run the app , we can check IP_ADDRESS_OF_SERVER:8000 , IP_ADDRESS_OF_SERVER:8000/
admin . It will not have any css , as the gunicorn only serves the application. We will be serving static files using
nginx .

To exit it press Ctrl+C .

starts the server by binding it to a specific port
(env-name) $ gunicorn --bind 0.0.0.0:8888 polls_rest.wsgi

running with a config file
(env-name) $ gunicorn -c /path/to/config/file polls_rest.wsgi

running in daemon mode
(env-name) $ gunicorn --daemon polls_rest.wsgi

If it is in daemon-mode, then exit it with pkill gunicorn , which will kill the gunicorn process.

To have a gunicorn config file for gunicorn , we write the config file in a .py .

Using nginx

By using gunicorn, we were able to run the application, but without styles as the gunicorn only runs the application
and does not serve the static files django does not serve static file except in development.

We will use nginx to serve the static files , nginx will first get the request, and it will send it to gunicorn.

To install nginx

$ sudo apt-get install nginx

let’s configure nginx

So, create a file /etc/nginx/sites-available/pollsapp and add the following

server {
listen 80; #L1
server_name SERVER_DOMAIN_OR_IP_ADDRESS_OF_SERVER; #L2

location = /favicon.ico { access_log off; log_not_found off; } #L3

location /static/ { #L4
root /home/django-polls-rest;

}

location / { #l5
include proxy_params;
proxy_pass http://unix:/home/django-polls-rest/polls_rest.sock;

}
}

• #L1 and #L2 lines defines where our nginx server should run.

• #L3 line ignores any errors related to the favicon.

• #L4 block location /static/ defines the location of static files.

• #L5 block location / tells the socket(gunicorn socket) to communicate.

After this, we have to enable this config file by linking with the sites-enabled folder.

50 Chapter 6. Deployment

http://docs.gunicorn.org/en/stable/configure.html#configuration-file

Essential Python Tools Documentation, Release 3.7

$ ln -s /etc/nginx/sites-available/pollsapp /etc/nginx/sites-enabled

We link the above file to sites-enabled , so that it will be included in the main nginx settings file /etc/nginx/
nginx.conf

After enabling the config file , we can check nginx configuration by

$ sudo nginx -t

If the configuration file is correct , then we should see this

Now we have to mention the static files directory of our app in settings.py file . So add this line in settings.py

STATIC_ROOT = os.path.join(BASE_DIR, 'static/')

After adding this line, we have to perform run collectstatic command

(env-name) $ python manage.py collectstatic

Let’s run the app

(env-name) $ gunicorn --daemon --workers 3 --bind unix:/home/django-polls-rest/polls_
→˓rest.sock polls_rest.wsgi

The /home/django-polls-rest/polls_rest.sock file is a unix-socket file which will be created auto-
matically. And this file will enable Gunicorn and Nginx to communicate with each other.

Now Restart Nginx for changes to take effect.

$ sudo service nginx restart

This will run our app in the http://IP_ADDRESS

Point to remember , check ALLOWED_HOSTS in settings.py to have you host name or ip address of
server.

Configuring Gunicorn with Supervisord

Supervisor is a process monitoring tool, which can restart any process if the process dies or gets killed for some reason.

At present we are manually starting gunicorn in daemon to run our app, Suppose if this gunicorn process closes or
gets killed due to some reason then we have to manually start it again. To monitor our processes we use Supervisord,
So that supervisor controls the gunicorn process.

To install supervisord

$ sudo apt-get install supervisor

Let’s add a configuration file pollsapi.conf for our application in /etc/supervisor/conf.d/ folder, the
conf.d folder will have all our config files.

6.6. Deploying a Django application 51

http://supervisord.org/

Essential Python Tools Documentation, Release 3.7

[program:pollsapi] #L1
directory=/home/django-polls-rest/polls_rest #L2
command=/home/.virtualenvs/demo-polls-1/bin/gunicorn --workers 3 --bind unix:/home/
→˓django-polls-rest/polls_rest.sock polls_rest.wsgi #L3
autostart=true #L4
autorestart=true #L5
stderr_logfile=/var/log/pollsapi.err.log #L6
stdout_logfile=/var/log/pollsapi.out.log #L7

Let’s understand the config file we have written,

• #L1 line [program:pollsapi] names the program(or process) as pollsapi, which can be used as

$ sudo supervisorctl start pollsapi

• #L2 line directory is the path to our project.

• #L3 line command is the command to start our project

• #L4 lines autostart tells the script to start on system boot.

• #L5 line autorestart tells the script to restart when it closes for some reason

• #L6 stderr_logfile which will store the error logs & #L7 stdout_logfile will store the non-error
logs.

Now lets save this file and update supervisor

$ sudo supervisorctl reread
$ sudo supervisorctl update
$ sudo supervisorctl reload

Check the supervisor status .

$ sudo supervisorctl status

This will show

To check gunicorn processes

$ ps ax | grep gunicorn

This command lists all the processes running with gunicorn

To check if the app is running , let’s do curl

$ curl 0.0.0.0:8000

After configuring gunicorn with supervisor, let’s restart our nginx

$ systemctl restart nginx

Now our app should be running on http://IP_ADDRESS_OF_SERVER

52 Chapter 6. Deployment

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

53

	Interactive environments and debugging
	Ipython
	Jupyter
	pdb and ipdb

	Linters and formatters
	PEP8
	pycodestyle
	pylint
	pyflakes
	flake8
	black
	autopep8
	yapf
	Conclusion

	Environment Management
	virtualenv and virtualenvwrapper
	pipenv
	pip, requirement.txt and pipfile
	poetry
	A comparision of the tools

	Source code management
	git
	github
	gitlab
	Continous Integration

	Documentation Tools
	Markdown (.md)
	Restructured Text (.rst)
	Sphinx

	Deployment
	Docker
	Fabric
	Ansible
	Google Cloud Platform
	Amazon Web Services
	Deploying a Django application

	Indices and tables

